A Comparative Study of Two Folate-Conjugated Gold Nanoparticles for Cancer Nanotechnology Applications
نویسندگان
چکیده
We report a comparative study of synthesis, characteristics and in vitro tests of two folate-conjugated gold nanoparticles (AuNP) differing in linkers and AuNP sizes for selective targeting of folate-receptor positive cancerous cells. The linkers chosen were 4-aminothiophenol (4Atp) and 6-mercapto-1-hexanol (MH) with nanoconjugate products named Folate-4Atp-AuNP and Folate-MH-AuNP. We report the folate-receptor tissue distribution and its endocytosis for targeted nanotechnology. Comparison of the two nanoconjugates' syntheses and characterization is also reported, including materials and methods of synthesis, UV-visible absorption spectroscopic measurements, Fourier Transform Infra Red (FTIR) measurements, Transmission electron microscopy (TEM) images and size distributions, X-ray diffraction data, elemental analyses and chemical stability comparison. In addition to the analytical characterization of the nanoconjugates, the cell lethality was measured in HeLa (high level of folate receptor expression) and MCF-7 (low level of folate receptor expression) cells. The nanoconjugates themselves, as well as the intense pulsed light (IPL) were not harmful to cell viability. However, upon stimulation of the folate targeted nanoconjugates with the IPL, ~98% cell killing was found in HeLa cells and only ~9% in MCF-7 cells after four hours incubation with the nanoconjugate. This demonstrates that folate targeting is effective in selecting for specific cell populations. Considering the various comparisons made, we conclude that Folate-4Atp-AuNP is superior to Folate-MH-AuNP for cancer therapy.
منابع مشابه
Folate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting)
A new folate-conjugated gold nanoparticle (AuNP) has been designed to selectively target the folate receptor that is overexpressed on the surface of tumoral cells. For this purpose, we made 4-aminothiophenol, as a bifunctional linker to react with HAuCl4 in the presence of sodium borohydride and it was binded to the AuNP surface through its thiol group. Then, we conjugated amino-terminated nano...
متن کاملKinetics of cell death triggered photothermally using folate-conjugated gold nanoparticles and various laser irradiation conditions in cancer cells
Introduction: In this study, we explore in detail cell-specific targeting efficacy of nano-photo-thermal therapy (NPTT) method and the resulting responses that are induced by variable laser intensities and exposure times in cancer cells to induce selective apoptosis. We delineate the synthesis of a high-yielding synthetic F-AuNPs by tailoring the surface of gold nanoparticles ...
متن کاملSynthesis and Characterization of a Novel Fe3O4-SiO2@Gold Core-Shell Biocompatible Magnetic Nanoparticles for Biological and Medical Applications
Objectives: The study of core-shell magnetic nanoparticles has a wide range of applications because of the unique combination of the nanoscale magnetic core and the functional shell. Characterization and application of one important class of core-shell magnetic nanoparticles (MNPs), i.e., iron oxide core (Fe3O4/γ-Fe2O3) with a silica shell and outer of gold (Fe3O4-SiO2@Gold (FSG)) in Boron Neut...
متن کاملEvaluation of multifunctional targeted gold nanoparticles on X-ray attenuation in nasopharyngeal cancer cells by X- ray imaging
Introduction: Head-and-neck cancer is the sixth most common cancer worldwide with the number of cases consistently increasing in developing countries. Successful development of effective, safe and cost effective nanoprobes for head-and-neck cancer targeting imaging is a big challenge. This study is aimed to develop cysteamine-folate conjugated gold nanoparticles (F-Cys-AuNPs) a...
متن کاملTargeted images of KB cells using folate-conjugated gold nanoparticles
Mercaptosuccinic acid-coated gold (GM) nanoparticles were prepared and characterized by transmission electron microscopy and dynamic light scattering. Folic acid (F) was then conjugated to the GM to preferentially target oral squamous cancer (KB) cells with folate receptors expressed on their membranes and facilitate the transit of the nanoparticles across the cell membrane. Finally, a fluoresc...
متن کامل